Received February 27, 1989; accepted July 4, 1989

1,1-DICHLORO-2,2,2-TRIFLUOROETHYL ZINC AND LITHIUM COMPOUNDS IN ASYMMETRIC SYNTHESIS

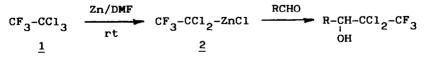
A. SOLLADIE-CAVALLO and S. QUAZZOTTI Laboratoire de Stéréochimie Organométallique (UA du CNRS 466), EHICS, 1 rue B. Pascal, 67008 Strasbourg (France)

SUMMARY

Addition of 1,1-dichloro-2,2,2-trifluoroethyl zinc chloride $\underline{2}$ complexed with optically pure ligands leads to zero percentage of asymmetric induction due to too large a distance between the chiral centers involved. However, addition of $\underline{2}$ and of the corresponding lithium derivative $\underline{3}$ on a chiral aldehyde leads respectively to 20% and 80% of asymmetric induction. Therefore lithium derivative $\underline{3}$ provides a good route to optically pure alcohols of type Ar-CH(OH)-CCl₂-CF₃.

INTRODUCTION

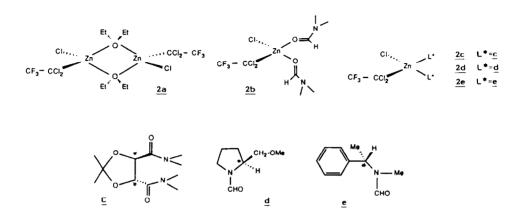
Being very lipophilic, the CF_3 group when present on a bioactive compound could influence its rates of absorption and transport, therefore, stereo and/or enantioselective introductions of this group on chiral molecules are important targets.


During our work on enantioselective synthesis of polyfluoro alcohols having CF_3 groups [1], we became interested in the use of 1,1,1-trichloro-2,2,2-trifluoroethane 1, which provides the possibility of building up the 1,1,1-trifluoroethyl group (CF_3 - CH_2) [2].

We want to report here our preliminary results concerning the use of 1,1dichloro-2,2,2-trifluoroethyl zinc chloride and 1,1-dichloro-2,2,2-trifluoroethyl lithium in asymmetric synthesis of chiral alcohols.

RESULTS AND DISCUSSION

I 1.1-dichloro-2.2.2-trifluoroethyl zinc chloride 2


Known since 1972 [3] 1,1-dichloro-2,2,2-trifluoroethyl zinc chloride $\underline{2}$ has been recently studied and used by Lang $\underline{et_{al.}}$ [4] for the synthesis of fluoro-containing building blocks.

0022-1139/90/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

Compound <u>2</u> in DMF reacts with a wide variety of substituted aliphatic and aromatic aldehydes [4a] and it has been shown [4b, 5] that the key intermediate and the reacting species in this one-pot synthesis is the DMF complex of <u>2</u>:<u>2b</u>. Therefore chiral and optically pure "analogs of DMF" such as <u>c,d</u> and <u>e</u> could be used in the place of DMF to induce chirality during the reaction.

Like complex $\underline{2b}$ [4b, 5], complexes $\underline{2c}$ -e are obtained by a ligand exchange reaction from the ether complex $\underline{2a}$, which is synthesized in the usual way [3]

2a + DMF or L _____ 2b or 2c-e [4b]

The results are given in Table 1.

The optical purity of the alcohols is readily determined from the tertiary proton $(R-CH(OH)-CCI_2-CF_3)$ using Eu(hfc)₃ (Tris[3-(heptafluoropropylhydroxymethylene) (+) camphorato] europium III).

The zero yield obtained with ligand \underline{c} could be due either to the fact that the corresponding complex $\underline{2c}$ is not formed or to the fact that this complex is too stable and does not react. Therefore complex $\underline{2c}$, which is easily obtained by the usual exchange reaction [6], was isolated and allowed to react with the same aldehyde in a 1/1 mixture of DMF and THF. As no reaction was observed one can conclude that complex $\underline{2c}$ is too stable to react and even to exchange with DMF.

In the case of ligand \underline{e} , the zero yield is due to the fact that complex $\underline{2e}$ is insoluble in the reaction mixture (a precipitate appears rapidly when $\underline{2a}$ is dissolved in a 1/1 mixture of \underline{e} /THF). With ligand \underline{d} the yield is satisfactory but the asymmetric

induction is nil; we think that the chiral center of ligand \underline{d} is too far remote from the asymmetric carbon created (Fig. 1).

The same situation has been already found during asymmetric alkylation of olefins complexed with palladium [7]. We thus decided to change our approach and to add complex <u>2b</u> on a chiral substrate (entry 11, Table 1).

The zinc complex <u>2b</u> adds smoothly to chiral complex <u>7</u> in very good yield, however the asymmetric induction is small (20%), and disappointing but consistent with our previous results on addition of perfluoro zinc iodide to the same complex <u>7</u> [1a].

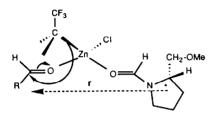
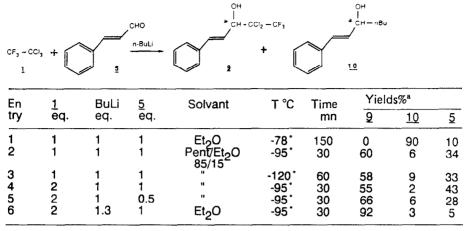


Fig. 1. Schematic representation of ligand positions.

-

TABLE 1

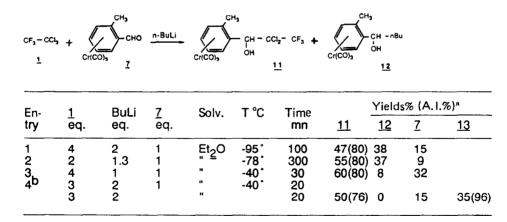
Reaction conditions and yields for :


- /----

<u>2a</u>	$R-CH-CC1_2-CF_3$						
En- try	Lig. L	L/THF	т℃	Time days	RCHO [‡]	Yields ^a %	e.e. ^b %
1 ^C 2 3 4 5	THF DMF "	THF 8/2 5/5 "	65° rt "	1 4 " 2	41571574160	0 65 50 100 70	- - - -
6 7 8 9 10	c ^d d e e	THF 5/5 " "	60° rt "	5 2 "	5 5 5 6 5 6	0 50 50 0 0	- 0 0 -
11	DMF	5/5	rt	0.8	<u>7</u>	100	20

^a Yields are obtained from 200MHz spectra of crude products and referred to the aldehyde. ^b Enantiomeric excess measured by NMR. ^c see ref. 5. ^d \underline{c} (solid) is dissolved in THF and then reacted with <u>2a</u>. [†] $\underline{4}$: Ph-CHO; $\underline{5}$: Ph-CH = CH-CHO; $\underline{6}$: iPr-CHO; $\underline{7}$:((CO)₃Cr)-CH₃-C₆H₄-CHO, see Table 3.

TABLE 2


Reaction conditions and yields for ;

^a Yields are obtained from 200MHz spectra of crude products and referred to the aldehyde.

TABLE 3

Reaction conditions and yields for :

^a Yields are obtained from 200Mhz NMR spectra of the crude compounds and referred to the aldehyde;A.I.is the asymmetric induction.

b After the first addition of 2 eq.of BuLi, the reaction is stirred for 20 mn,then 3 more eq. of <u>1</u> are added,followed by 2 more eq. of <u>BuLi</u> to force the reaction to completion.

224

II 1.1-dichloro-2.2.2-trifluoroethyl lithium 3.

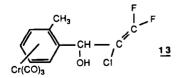
Polyhaloorganolithium compounds are very useful reagents in organic synthesis however they undergo rapid decomposition. 1,1-Dichloro-2,2,2-trifluoroethyl lithium <u>3</u> needs very low temperature and special solvent-mixtures to react correctly on a substrate [8].

To avoid these difficulties the lithium derivative 3 is generated <u>in situ</u> (in the presence of the substrate) from compound <u>1</u> and BuLi in ether at low temperature.

$$CF_3-CC1_3 + BuLi \longrightarrow CF_3-CC1_2Li \longrightarrow CF_2=CC1_2$$

 $1 \qquad \qquad 3 \ RCH0 \qquad 8 \ CF_3-CC1_2-CH-R \qquad OH$

Lithium sodium (1%) alloy which had been used successfully with perfluoroiodides (1c) does not react


The reaction-conditions are optimized on the inexpensive aldehyde 5 and the results are given in Table 2.

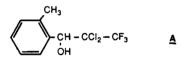
At -95°C, and lower, addition of BuLi to aldehyde <u>5</u> is minimal. The best reaction-conditions correspond to entry 6; Et_2O is the solvent, -95°C the temperature and the ratio CF_3 - CCl_3 / BuLi/<u>5</u> is 2/1.3/1.

Compared with the reaction-conditions proposed in the literature [8], this method ,with generation of the anion in situ, allows the use of classical solvent and higher temperatures.

The optimized reaction-conditions found above have been used with chiral complexed aldehyde \underline{Z} , Table 3. Under those conditions (entry 1, Table 3) the reactivities of BuLi toward aldehyde \underline{Z} and compound 1 are similar (47 and 38% of <u>12</u>). But at -40°C the percentage of addition of BuLi on aldehyde \underline{Z} is reduced to 8%. The asymmetric induction is readily obtained from the diastereomer ratio measured by 200MHz NMR on the CH,OH and CH₃ signals in complexed alcohol <u>11</u>. The percentage of asymmetric induction is high enough (80%) to provide an efficient synthesis of optically pure alcohol <u>A</u>.

However, in an attempt to force the reaction to completion (by adding more $\underline{1}$ and BuLi after 20mn reaction) formation of a new alcohol $\underline{13}$ is observed.

Proton NMR of compound <u>13</u> is similar to the one of compound <u>11</u> except for the tertiary proton which is a broad multiplet at 5.6ppm in <u>13</u> (due to long-range coupling constants with the fluorine atoms through the double bond), and a doublet $({}^{3}J_{OH}=4Hz)$ at 5.2ppm in <u>11</u>.


Fluorine NMR corroborates structure <u>13</u> with two doublets for the two non-equivalent fluorine (${}^{2}J_{FF}$ =34Hz).A singlet is observed for the CF₃ group in compound <u>11</u>.

Observation of alcohol <u>13</u> in the last experiment (Table 3, entry 4 suggests that olefin <u>8</u> formed during the first 20min of the reaction (after the first addition of BuLi on the mixture 1 + 7) reacts with BuLi faster than compound <u>1</u> and adds to aldehyde <u>7</u>.

CONCLUSION

Addition of the lithium derivative $\underline{3}$ of compound $\underline{1}$ leads to satisfactory percentage of asymmetric induction (80%), and after purification optically pure alcohols of type \underline{A} can be obtained.

The zinc derivative $\underline{2b}$ gives better yield (~100%) but poor asymmetric induction.

EXPERIMENTAL

1,1,1-Trichloro-2,2,2-trifluoroethane <u>1</u> was supplied by Ciba-Geigy and used without further purification The solvents were dried before use (THF and Et₂O are refluxed over LiAlH₄, DMF and pentane are stored over activated molecular sieves 4A). Zinc powder (from Prolabo) was activated according to Fieser and Fieser [10]. BuLi is titrated before use. Aliphatic and aromatic aldehydes were obtained from Aldrich and used without further purification except for benzaldehyde which was purified in the usual way[11]. Complex <u>7</u> was synthesized, purified and identified according to our method [12]. All the reactions were run under Argon. ¹H NMR spectra were recovered on a Bruker WP 200 SY (in CDCl₃/TMS) and the ¹⁹F NMR spectrum on a Bruker AM 360 (¹⁹F frequency= 338.8MHz).

Reaction of complex 2a with aldehydes

Complex 2a (1.5mmols) is dissolved in DMF (2ml) or in the desired chiral ligand ; after 15min. stirring, THF (2ml) and the aldehyde (2mmols) are added successively. After 2 days stirring at room temperature the usual work-up is done and the crude products analyzed by 200MHz NMR.

Addition of 3 to aldehydes

Compound <u>1</u> and the aldehydes (5 or 7) are dissolved in the solvent (about 1mmol of <u>5</u> in 2Oml of solvent) and cooled under stirring to the desired temperature (15min). Then BuLi in hexane is added dropwise [9] using a precooled syringe. After stirring at low temperature for the desired amount of time, the temperature is allowed to reach 0°C and 10% HCl added. After the usual extraction, crude products are analyzed by 200MHz NMR.

The alcohols obtained from aliphatic and aromatic aldehydes 4,5, and 6 have already been described by Lang [4a], our compounds have the same physical and spectral characteristics.

Alcohol <u>11</u>: 2,2-dichloro-1,1,1-trifluoro-3-o-methylphenyl chromiumtricarbonyl-propan-3-ol.

This alcohol has been obtained as a mixture of diastereomers from the zinc derivative <u>2b</u> (20% asymmetric induction) and from the lithium derivative <u>3</u> (76-80% asymmetric induction). The diastereomers were separated by flash chromatography (Merck Silica gel 60, 230-400 mesh; Et₂O/Hexane 20/80)

Diastereomer I : minor compound, rf = 0.20; IR (CHCl₃) (OH)=3585(free),3300(bounded)cm⁻¹, (CO)=1980, 1900cm⁻¹; H-1NMR : 2.56(3H,s,CH₃),3.01(1H,d,OH,³J=6Hz),4.95(1H,d,CH, ³J=6Hz),5.11(1H,d, aromatic H),5.14(1H,t,aromatic H),5.53(1H,t, aromatic H), 5.56 (1H,d,aromatic H).

Diastereomer II: major compound, rf = 0.39 ; H-1 NMR : 2.34(3H,d,CH₃),2.71(1H,d,OH,³J=4Hz),5.06 (1H,d.d, aromatic H, ³J=6.5Hz, ⁴J=1Hz),5.20(1H,d,CH,³J=4Hz), 5.26 (1H,t.d,aromatic H,³J=6.5Hz, ⁴J=1Hz),5.56(1H,t.d,aromatic H, ³J=6.5Hz,⁴J=1Hz), 6.10(1H,d.d, aromatic H,³J=6.5Hz,⁴J=1Hz) ; F-19 NMR (CDCl₃, ext. ref. C₆F₆), 86.63(3F,s, CF₃).

Alcohol 13: major compound;

H-1 NMR : 2.16(3H,s,CH₃),2.4(1H,b,OH)5.15(1H,d.d,aromatic H,³J=6.5Hz, 4 J=1Hz),5.29(1H,t.d,aromatic H, 3 J=6.5Hz, 4 J=1Hz),5.45 (1H, t.d,aromatic H, 3 J=6.5Hz, 4 J=1Hz), 5.61 (1H,bm,CH),5.93(1H,d.d, aromatic H, 3 J=6.5Hz, 4 J=1Hz); F-19 NMR (CDCl₃, ref ext C₆F₆), 77.01(1F,d,{}^{2}J=34Hz),73.80 (1F,d, 2 J=34Hz).

A minor diastereomer is detected with two doublets: 75.40(1F,d, 2J =34Hz), 72.20(1F,d, 2J =34Hz). The ratio $\underline{13}$ minor/ $\underline{13}$ major is 2/98 .

ACKNOWLEDGMENT

We thank CIBA-GEIGY for providing compound <u>1</u> and ligand \underline{c} ; Dr. R.W. Lang and B. Schaub for helpful discussions.

REFERENCES

- 1 a-A. Solladié-Cavallo, D. Farkhani, S. Fritz, T. Lazrak and J. Suffert; Tetrahedron Lett., 25 (1984) 4117
 - b-A. Solladié-Cavallo, J. Suffert and D. Farkhani; Ann. Chim.Fr., <u>9</u> (1984) 683 c-A. Solladié-Cavallo and J. Suffert; Synthesis, (1985) 659
- 2 A. Posta, O. Paleta and J. Hemer; Coll. Czech. Chem. Comm. 32 (1967) 2301.
- 3 A. Posta and O. Paleta; Coll. Czech. Chem. Comm., 37 (1972) 3946
- 4 a- R.W. Lang; Helv. Chim. Acta, 69 (1986) 881.
 - b- D. Bellus, B. Klingert, R.W. Lang and G. Rihs; J. Organometall. Chem., <u>339</u> (1988) 17.
 - c- R.W. Lang; Helv. Chim. Acta, 71 (1988) 369.
- 5 R.W. Lang and B. Schaub (Ciba-Geigy), private communication.
- 6 <u>2a</u> (1eq) and c (2eq) are dissolved in THF, a precipitate appears, after addition of pentane and cooling the precipitate (<u>2c</u>) is filtered.
- 7 A. Solladié-Cavallo and J.L. Haesslein; Helv. Chim. Acta 56, (1983) 1760.
- 8 D. Seyfert, D.C. Mueller and F.M. Armbrecht; Organometall. Chem. Syn., <u>1</u>, (1970)
 3.
- 9 Addition of BuLi must be very slow (0.3ml in 7mn).
- 10 L.F. Fieser and M. Fieser; Reagents for Organic Synthesis, J. Wiley & Sons; NY;1967, p.1276.
- 11 D.D. Perrin, W.L.F. Armarego and D.R. Perrin; Purification of Laboratory Chemicals; Pergamon Press, 2d ed., 1980
- 12 A. Solladié-Cavallo, G. Solladié and E. Tsamo; J. Org. Chem., 44 (1979) 4189.